Particle Video for Crowd Flow Tracking - Entry-Exit Area and Dynamic Occlusion Detection
نویسندگان
چکیده
In this paper we interest ourselves to the problem of flow tracking for dense crowds. For this purpose, we use a cloud of particles spread on the image according to the estimated crowd density and driven by the optical flow. This cloud of particles is considered as statistically representative of the crowd. Therefore, each particle has physical properties that enable us to assess the validity of its behavior according to the one expected from a pedestrian and to optimize its motion dictated by the optical flow. This leads us to three applications described in this paper: the detection of the entry and exit areas of the crowd in the image, the detection of dynamic occlusions and the possibility to link entry areas with exit ones according to the flow of the pedestrians. We provide the results of our experimentation on synthetic data and show promising results.
منابع مشابه
Pedestrian Motion Tracking and Crowd Abnormal Behavior Detection Based on Intelligent Video Surveillance
Pedestrian tracking and detection of crowd abnormal activity under dynamic and complex background using Intelligent Video Surveillance (IVS) system are beneficial for security in public places. This paper presents a pedestrian tracking method combing Histogram of Oriented Gradients (HOG) detection and particle filter. This method regards the particle filter as the tracking framework, identifies...
متن کاملApplying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملCrowd Motion Analysis Based on Social Force Graph with Streak Flow Attribute
Over the past decades, crowd management has attracted a great deal of attention in the area of video surveillance. Among various tasks of video surveillance analysis, crowd motion analysis is the basis of numerous subsequent applications of surveillance video. In this paper, a novel social force graph with streak flow attribute is proposed to capture the global spatiotemporal changes and the lo...
متن کاملTracking individuals in surveillance video of a high-density crowd
Video cameras are widely used for monitoring public areas, such as train stations, airports and shopping centers. When crowds are dense, automatically tracking individuals becomes a challenging task. We propose a new tracker which employs a particle filter tracking framework, where the state transition model is estimated by an optical-flow algorithm. In this way, the state transition model dire...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014